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Abstract

IMPORTANCE Epidemiological studies indicate a link between obsessive-compulsive disorder and
infections, particularly streptococcal pharyngitis. Pediatric acute-onset neuropsychiatric syndrome
(PANS) manifests suddenly with obsessions, compulsions, and other behavioral disturbances, often
after an infectious trigger. The current working model suggests a unifying inflammatory process
involving the central nervous system, particularly the basal ganglia.

OBJECTIVE To investigate whether diffusion-weighted magnetic resonance imaging (DWI) detects
microstructural abnormalities across the brain regions of children with PANS.

DESIGN, SETTING, AND PARTICIPANTS Case-control study performed at a single-center,
multidisciplinary clinic in the United States focusing on the evaluation and treatment of children with
PANS. Sixty consecutive patients who underwent 3 Tesla (T) magnetic resonance imaging (MRI)
before immunomodulation from September 3, 2012, to March 30, 2018, were retrospectively
reviewed for study inclusion. Six patients were excluded by blinded investigators because of imaging
or motion artifacts, 3 patients for major pathologies, and 17 patients for suboptimal atlas image
registration. In total, 34 patients with PANS before initiation of treatment were compared with 64
pediatric control participants.

MAIN OUTCOMES AND MEASURES Using atlas-based MRI analysis, regional brain volume,
diffusion, and cerebral blood flow were measured in the cerebral white matter, cerebral cortex,
thalamus, caudate, putamen, pallidum, hippocampus, amygdala, nucleus accumbens, and brainstem.
An age and sex–controlled multivariable analysis of covariance was used to compare patients with
control participants.

RESULTS This study compared 34 patients with PANS (median age, 154 months; age range, 55-251
months; 17 girls and 17 boys) and 64 pediatric control participants (median age, 139 months; age
range, 48-213 months); 41 girls and 23 boys). Multivariable analysis demonstrated a statistically
significant difference in MRI parameters between patients with PANS and control participants
(F21,74 = 6.91; P < .001; partial η2 = 0.662). All assessed brain regions had statistically significantly
increased median diffusivity compared with 64 control participants. Specifically, the deep gray
matter (eg, the thalamus, basal ganglia, and amygdala) demonstrated the most profound increases
in diffusivity consistent with the cardinal clinical symptoms of obsessions, compulsions, emotional
dysregulation, and sleep disturbances. No statistically significant differences were found regarding
volume and cerebral blood flow.
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Abstract (continued)

CONCLUSIONS AND RELEVANCE This study identifies cerebral microstructural differences in
children with PANS in multiple brain structures, including the deep gray matter structures (eg, the
thalamus, basal ganglia, and amygdala). Further study of MRI is warranted in prospective, clinical
trials as a potential quantitative method for assessing patients under evaluation for PANS.

JAMA Network Open. 2020;3(5):e204063. doi:10.1001/jamanetworkopen.2020.4063

Introduction

The diagnostic considerations of childhood-onset obsessive-compulsive disorder (OCD) have
evolved substantially since the late 1980s. Early prospective studies1,2 of children with OCD revealed
that a subgroup experienced an unusually abrupt onset (<48 hours) and a relapsing-remitting course
of neuropsychiatric symptoms, notably after streptococcal pharyngitis. In parallel, research on
Sydenham chorea, a neurological sequela of group A streptococcal infection, found that 50% to 70%
of affected children experienced obsessions and compulsions before, during, or after onset of
chorea.3-5 These findings led to the hypothesis that Sydenham chorea might share a common
pathophysiology with acute-onset OCD even when chorea is absent,5 thus forming the basis of a new
diagnostic entity, namely, pediatric autoimmune neuropsychiatric disorders associated with
streptococcal infections (PANDAS).

The new PANDAS classification was subsequently met with skepticism. Concerns were raised in
particular about the lack of clear distinction between PANDAS and other neuropsychiatric diagnoses,
as well as the strength of the association between OCD and group A streptococcal infection.6-10 To
address these issues, a group of clinicians and scientists convened in 2010 to discuss all possible
cases of acute-onset OCD regardless of cause.11 Participants unanimously agreed that acute onset
was the key distinguishing clinical feature and proposed the more inclusive term of pediatric acute-
onset neuropsychiatric syndrome (PANS). Since the development of this diagnostic entity, a number
of clinics and research programs have further characterized the many comorbid symptoms that can
suddenly start along with OCD, including sleep disturbances, emotional dysregulation, eating
restriction, pain and sensory disturbances, urinary symptoms (enuresis and polyuria), cognitive and
behavior regression, anxiety, transient psychotic symptoms, oppositionality, impulsivity, irritability
and rage.12-23

By definition, PANS includes not only PANDAS but also early, abrupt-onset OCD associated with
other infectious and noninfectious triggers.11,24 A comprehensive diagnostic workup must be
performed to rule out other known differential diagnoses, such as Sydenham chorea, Tourette
syndrome, and systemic lupus erythematosus. Current recommended diagnostic testing targets
inflammatory biomarkers given the link between OCD disorders and autoimmunity observed in
epidemiological studies.25-31 Symptoms of PANS and PANDAS are hypothesized to result from cross-
reactive antibodies that breach a compromised blood-brain barrier and damage neuronal tissues in
the basal ganglia and amygdala.32 However, some studies33,34 have reported poor predictive value
(17%-40% for positive predictive value and 44%-74% for negative predictive value) and low test
performance (15%-60% sensitivity and 28%-92% specificity) for standard PANS diagnostic
evaluations, including inflammatory markers such as erythrocyte sedimentation rate, C-reactive
protein, and antibody titers. There remains a pressing need for reliable biomarkers to improve
diagnostic accuracy and validate the underlying pathophysiology of PANS.

Diffusion-weighted magnetic resonance imaging (DWI) could potentially serve as a noninvasive
tool for assessing microstructural differences of the brain in children with a suspected inflammatory
cause of abrupt-onset OCD. Although prior research has identified volumetric and inflammatory
changes in the basal ganglia,35-37 no studies to our knowledge have yet assessed cerebral blood flow
(CBF), which may be associated with local inflammation, or the mean diffusivity or apparent diffusion
coefficient (ADC), which measures the magnitude of water molecule diffusion within tissue. In the
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setting of neuroinflammation, ADC is expected to increase because of water molecules diffusing
freely throughout the extracellular space.38-40 Herein, a retrospective, cross-sectional analysis was
conducted of regional brain volume, ADC, and CBF differences across various brain regions in
patients with PANS and in pediatric control participants. It was hypothesized that affected children
would exhibit higher diffusivity compared with control participants in the deep gray matter (eg,
thalamus, basal ganglia, and limbic structures) given the predominant symptoms of OCD, emotional
dysregulation, and sleep disturbances. We expected limited volumetric or CBF differences because
of patient group heterogeneity in the timing of imaging after an acute flare in neuropsychiatric
symptoms.

Methods

The study was approved by the Stanford University Institutional Review Board. Written informed
consent was obtained from all parents, and assent was obtained for all patients in the study. A
separate institutional review board protocol allowed for medical record review and analysis of
magnetic resonance imaging (MRI) data under a specific protocol for the control group. This study
followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting
guideline.

Patient Selection
In this case-control study, consecutive patients evaluated in the Stanford University PANS
multidisciplinary clinic from September 3, 2012, to March 30, 2018, were retrospectively reviewed.
The study population was identified using the following inclusion criteria: patients were aged 4 to 18
years, met criteria for PANS (eAppendix in the Supplement), and received 3 Tesla (T) DWI before
initiation of anti-inflammatory or immunomodulatory therapy. Patients with a clinical profile that
better matched a diagnosis of Sydenham chorea (ie, clinically significant chorea) or Tourette
syndrome (ie, waxing and waning OCD and tics) were excluded. The presence of neuropsychiatric
symptoms and neurological signs at the time of MRI was investigated through review of medical
records and prospectively administered patient questionnaires. The Children’s Global Assessment
Scale (CGAS) is a clinician’s rating of a patient’s psychological and social function ranging from scores
of 1 to 100, with higher scores indicating better functioning.41 Clinicians in this study received training
on assigning CGAS scores and recorded scores at the end of each clinical encounter. The CGAS scores
were collected in a research database, and missing scores were obtained retrospectively.

Members of the medical imaging team (E.S.M., N.D.F, and K.W.Y) who were blinded to the
disease and hypothesis under study performed the image analysis and excluded images with
inadequate data, such as motion artifacts and unidentified bright objects, and structural pathologies,
such as masses or cysts. Among 60 consecutive patients who met study entry criteria, 6 patients
were excluded by blinded investigators because of imaging or motion artifacts, 3 patients for major
pathologies, and 17 patients for suboptimal atlas image registration. In total, 34 patients with PANS
before initiation of treatment were compared with 64 pediatric control participants.

For the control group, all children 18 years or younger seen for evaluation via a 3T MRI system at
Lucile Packard Children’s Hospital, Stanford, California, from January 5, 2010, to October 22, 2013,
were retrospectively reviewed. Control participants underwent imaging as a standard of care for
evaluation of syncope, nausea, family history of aneurysm or cancers, scalp nevus, cholesteatoma,
sinus disease or inflammatory nasal obstruction, isolated facial lesions, orbital strabismus, or familial
short stature. A thorough medical record review was performed to identify any history of systemic
diseases (eg, kidney, gastrointestinal, or cardiac), cancer, prematurity, migraines, hearing loss,
vascular lesions, infection, prior radiotherapy, or laboratory abnormalities. Only those individuals
with normal-appearing brains on MRI and no known neurological, neurocognitive, developmental, or
behavioral deficits were included. Control participants younger than 4 years were excluded to
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optimize age matching with the patient group. Rigorous quality control was similarly performed on
control MRI. The control population has been previously described.42

MRI Acquisition
Patients underwent MRI at varying points during their disease course relative to an initial or recurrent
symptomatic flare-up. For all individuals, 3T MRI was obtained with an 8-channel head coil on a single
MRI scanner (Discovery 750W; GE Healthcare). Pseudocontinuous arterial spin labeling (ASL) MRI
was performed using the methods described by Dai et al.43 Briefly, this vendor-supplied ASL MRI was
performed using a pseudocontinuous labeling period of 1500 milliseconds (ms), followed by a
1500-ms postlabel delay. Whole-brain images were obtained with a 3-dimensional, background-
suppressed, fast spin-echo stack-of-spirals method. Multiarm spiral imaging was used, with 8 arms
and 512 points obtained on each arm (bandwidth, 62.5 kHz), yielding a 3-mm2 in-plane spatial
resolution and a 4-mm section thickness. A high level of background suppression was achieved using
4 separate inversion pulses spaced around the pseudocontinuous labeling pulse. The acquisition
time was approximately 5 minutes for this sequence, which also included proton density images
required for CBF quantification. For a graphic setup of the ASL, the sagittal image was used for
alignment after the 3-plane localizer. Postprocessing was performed using an automated
reconstruction procedure according to the microsphere methods described by Buxton et al.44 Other
pseudocontinuous ASL MRI parameters were repetition time of 4632 ms, echo time of 10.5 ms,
24-cm field of view, and 3 excitations.

In addition, echoplanar whole-brain DWI was obtained in all patients, with repetition time of
1500 ms, echo time of 37 ms, 90° flip angle, 24 × 24–cm field of view, 128 × 128–pixel acquisition
matrix interpolated to a 256 × 256–pixel matrix, 44 sections with 4-mm slice thickness, no skip, and
2 diffusion weightings of b = 0 seconds/mm2 and b = 1000 seconds/mm2, for which diffusion
gradients were obtained in 3 directions and averaged. Derived from DWI, the ADC has demonstrated
high reproducibility and was performed as part of routine institutional neuroimaging.45

Image Processing
A custom image processing pipeline was used in this work to extract quantitative values of regional
brain volume, ADC, and CBF, previously described by Forkert et al.42 In brief, rigid registration was
used for motion correction of the DWI data set with and without diffusion weighting before
calculation of the quantitative ADC parameter map using the equation described by Stejskal and
Tanner.46 For volumetric, regional diffusion, and CBF analysis, the Montreal Neurological Institute 152
brain atlas47 was nonlinearly registered to the DWI data set using a concatenated affine and b-spline
transformation and maximization of the mutual information metric. The resulting nonlinear
transformation was used to warp the Harvard-Oxford subcortical brain regions, as defined in the
Montreal Neurological Institute atlas space, to the individual-specific brain anatomy. Brain regions
included in the atlas were the cerebral white matter, cerebral cortex, lateral ventricles, thalamus,
caudate, putamen, pallidum, hippocampus, amygdala, nucleus accumbens, and brainstem. Three
experienced, blinded observers (E.S.M., N.D.F., and K.W.Y.) performed strict quality control of all
patient and control MRI registrations, excluding those with suboptimal overlap between reference
and patient brain regions. The aligned brain atlas regions were then used to measure the regional
brain volume, median ADC, and median CBF values for corresponding brain structures in each
hemisphere. The lateral ventricles were only included in the volumetric assessment.

Analysis of Imaging Data
Using atlas-based MRI analysis, regional brain volume, diffusion, and CBF were measured in the
cerebral white matter, cerebral cortex, thalamus, caudate, putamen, pallidum, hippocampus,
amygdala, nucleus accumbens, and brainstem. An age and sex–controlled multivariable analysis of
covariance (MANCOVA) was used to test the null hypothesis that the mean values of MRI parameters
for patients are equal to those of control participants. Only a subset of patients (n = 25) had CBF
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values available, so 2 separate analyses were conducted. One analysis included only volumetric and
median ADC values as dependent variables, whereas the second analysis also incorporated CBF
values. Both analyses used age and sex as covariates and class (patient vs control) as the fixed factor.
If the outcomes of the MANCOVA were found to be statistically significant, subsequent univariate
analysis was performed to identify the key MRI parameters on which patients differed from control
participants. A χ2 test for variance was performed to assess the variability of each imaging feature in
patients vs control participants given the temporal heterogeneity of cases. SPSS, version 24.0 (IBM),
was used for the MANCOVA statistical analyses, and P < .05 was considered statistically significant
after Bonferroni correction for multiple testing where applicable.

Secondary exploratory 1-way MANCOVA analyses were conducted to assess whether group
differences would vary based on the presence of chorea, defined as subtle choreiform movements
or twitches noted on a modified standing Romberg position or a milkmaid grip. These analyses were
motivated by the initial hypothesis that Sydenham chorea and PANS share a common
neuroinflammatory pathophysiology. A Bonferroni-corrected P < .05 was considered statistically
significant after accounting for multiple-group comparisons (patients with chorea vs patients
without chorea vs control participants).

In addition to the statistical analysis described above, plots with age-related 5th, 10th, 25th,
50th, 75th, 90th, and 95th quantile curves were generated for each parameter, investigated using
local piecewise regression analysis described by Sakov et al48 based on the control group data for
each brain structure and parameter. Corresponding data points for the patient group were also
plotted for visual assessment. The plots were generated using the R statistical software package,
version 3.2.2 (The R Foundation for Statistical Computing).

Results

Clinical Characteristics of Patients With PANS
Included in this study were 34 patients with PANS (median age, 154 months; range, 55-251 months)
and 64 pediatric control participants (median age, 139 months; range, 48-213 months). The patient
group consisted of 17 girls and 17 boys; the control group consisted of 41 girls and 23 boys. Twelve
patients (35%) were classified as having new acute-onset psychiatric symptoms, 7 (21%) as having
chronic static psychiatric symptoms since PANS onset, and 15 (44%) as having an acute flare with
chronic symptoms (Table 1).41 Patients underwent MRI at different time points after symptomatic
presentation, with patients with new acute-onset psychiatric symptoms receiving imaging within
days of initial onset and some patients receiving imaging years after initial onset (mean time after
initial onset, 404 days; range, 9 days for an acute-onset case to 4097 days for a chronic case). The
detailed selection process, including patient and control inclusion and exclusion criteria, is shown in
Figure 1.

All patients had an abrupt onset or relapse of obsessions and compulsions and had at least 2
other severe behavioral or psychiatric symptoms meeting PANS criteria. For the 14 patients (41%)
with tics, the psychiatry team (including M.T.) excluded the possibility of Tourette syndrome because
the illness onset and psychiatric comorbidities more closely fit the PANS criteria. Eighteen patients
(53%) had findings of subtle choreiform movements or twitches on the Romberg test. These results
were not clinically significant because they were not noticed by the patient, family, or referring
clinician. Given that patients did not have frank chorea and that the impairing symptoms were
predominantly psychiatric, no patient was referred to neurology for evaluation of chorea. Only 14
patients (41%) had evidence of a preceding group A streptococcal infection. Children’s Global
Assessment Scale scores (range, 1-100), obtained on average 6 to 7 days before MRI, indicated severe
psychiatric impairment (mean [SD] score, 49.1 [15.3]).
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Group Comparison Between PANS and Control
The 1-way MANCOVA analysis among all 34 patients (with age and sex as covariates) demonstrated a
statistically significant group difference between patients with PANS and control participants
(F21,74 = 6.91; P < .001; partial η2 = 0.662). Univariate analysis showed that all ADC values were
statistically significantly increased in the brain structures analyzed, particularly the thalamus
(F1,96 = 67.38; P < .001), caudate (F1,96 = 41.10; P < .001), putamen (F1,96 = 40.87; P < .001), pallidum
(F1,96 = 46.79; P < .001), and amygdala (F1,96 = 27.31; P < .001). No difference regarding any volume

Table 1. Clinical Characteristics Evaluated at the Time of Magnetic
Resonance Imaging (MRI) Among 34 Patients With Pediatric
Acute-Onset Neuropsychiatric Syndrome Included in the Study

Variable No. (%) (n = 34)
Age at initial neuropsychiatric decline, mean (SD), y 10.4 (3.1)

Age at MRI date, mean (SD), y 12.9 (3.9)

CGAS score, mean (SD)a 49.1 (15.3)

Disease status at MRI

New acute-onset psychiatric symptoms 12 (35)

Chronic static psychiatric symptoms 7 (21)

Acute flare with chronic symptoms 15 (44)

Neuropsychiatric symptoms at the time of MRI

Obsessions and compulsions 33 (97)

Eating restriction 16 (47)

Anxiety 23 (68)

Emotional dysregulation 27 (79)

Irritability or rage 21 (62)

Oppositionality 7 (21)

Hyperactivity or impulsivity 8 (24)

Attention issues 12 (35)

Behavior regression 7 (21)

Cognitive difficulties 14 (41)

Urinary symptoms of enuresis or polyuria 8 (24)

Temperature dysregulation 3 (9)

Sensory amplification 16 (47)

Sleep disturbance 23 (68)

Psychosis, including hallucinations and/or delusions
and/or catatonia

6 (18)

Tics 14 (41)

Waking unrefreshed and daytime fatigue,
total score ≥3

16 (47)

Pain dysregulation in ≥3 areas 7 (21)

Neurological examination at the time of MRI

Positive glabellar tap reflex 9 (26)

Tongue fasciculations or wormian tongue,
but not darting

12 (35)

Truncal instability or slumped posture 19 (56)

Overflow dystonia on straight arm raise 4 (12)

Overflow dystonia on stress gait 4 (12)

Subtle choreiform movements or twitches,
but not ticsb

18 (53)

Abbreviation: CGAS, Children’s Global Assessment Scale.
a The CGAS is a rating of a child’s psychological and social functioning. The score

ranges from 1 to 100 and is based on clinician assessment.41

b In all of these patients, the psychiatric symptoms were prominent and severe,
but the subtle choreiform movements or twitches in limbs or hands seen with
the Romberg test were subtle, infrequent, and not noticed by the patient,
family, or referring clinician. Clinically apparent cases of chorea that better fit
the diagnosis of Sydenham chorea were excluded from this study.
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measurement (F1,96<2.41; P > 1.24) was found between the groups (Table 2). However, the volume
variability of all brain regions, except for the caudate, putamen, hippocampus, and nucleus
accumbens, was larger in patients vs control participants, although the differences did not reach
statistical significance (t33<39.45; P > .204). The separate MANCOVA analysis among the 25 patients
with suitable CBF data (age and sex as covariates) also showed a statistically significant group
difference (F31,55 = 4.57; P < .001; partial η2 = 0.720). All ADC values were statistically significantly
increased in patients vs control participants (F1,87 > 8.08; P < .006). Univariate analysis showed
limited differences in CBF between groups, with only the cerebral cortex reaching statistical
significance (F1,87 = 4.02; P = .048). Variability in CBF to all brain regions was larger in patients vs
control participants, but no differences reached statistical significance (t24<25.75; P > .366).

To assess whether patients with subtle choreiform movements or twitches differed from those
without these movements, 3 secondary MANCOVA analyses were performed with regional brain
volume, median ADC, and median CBF parameters as dependent variables, respectively. Statistically
significant differences in each analysis were detected between patients with PANS with or without
subtle choreiform movements or twitches and control participants (F20,150<2.17; P < .005). No
statistically significant differences were found comparing these 2 PANS subgroups. Exploratory post
hoc pairwise analyses comparing patients with PANS with subtle choreiform movements or twitches
vs control participants showed statistically significant differences in all ADC values (minimal mean
[SD] difference, −26.00 [5.47]; P < .001), consistent with previous results. The subgroup without
these movements demonstrated statistically significant differences in ADC values only for cerebral
white matter, thalamus, caudate, putamen, pallidum, and amygdala (minimal mean [SD] difference,
30.39 [11.94]; P < .04). These differences were also smaller in magnitude compared with those
between patients with PANS with subtle choreiform movements or twitches and control
participants. No differences in the univariate regional brain volume and CBF analyses reached
statistical significance.

Qualitative Analysis
The results of the statistical evaluation were also confirmed by visual analysis of the plots generated
using local piecewise regression analysis. Overall, no difference between patients with PANS and
control participants is obvious for regional brain volume or CBF values analyzed (eFigure in the
Supplement). However, the plots clearly show statistically significantly increased ADC values across

Figure 1. Participant Flow Diagram With Selection and Exclusion Criteria

Excluded
36 Children younger than 4 y

93

36 Control participants

39 Suboptimal atlas image registration
17 Patients
22 Control participants

3 Major pathologies (eg, masses, cysts)
3 Patients

15 Image or motion artifacts
(eg, bright signal, dielectric
effect, aliasing)
6 Patients
9 Control participants

191 Participants assessed for eligibility
60 Consecutive patients meeting PANS

criteria who received 3T MRI before
treatment from 2012 to 2018

131 Population control participants with
3T MRI from 2010 to 2013

98 Participants included in the study
34 Patients 
64 Control participants

Sixty patients diagnosed as having pediatric acute-
onset neuropsychiatric syndrome (PANS) and 131
control participants were selected for this case-control
study. Thirty-four patients and 64 control participants
were included in the final analysis. MRI indicates
magnetic resonance imaging.
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brain regions, especially in the deep gray matter (thalamus, basal ganglia, amygdala) and nucleus
accumbens (Figure 2).

Discussion

It was expected that patients with PANS would exhibit increased regional diffusion across thalamic,
basal ganglia, and limbic structures compared with control participants given the hypothesized
inflammatory pathophysiology and cardinal psychiatric symptoms.37,49,50 This study identified
increased diffusion patterns across patients in all brain regions analyzed, with the most pronounced
differences in the deep gray matter, including the thalamus, basal ganglia (caudate, putamen, and

Table 2. Volumetric, Apparent Diffusion Coefficient (ADC), and Cerebral Blood Flow (CBF) Analyses by Brain Region

Variable

Mean (SE) [95% CI]a Univariate test

PANS (n = 34) Control (n = 64)
Mean difference
(PANS minus control) F distribution P valueb

Regional brain volume, mL

Cerebral white matter 195.12 (3.21) [188.75-201.49] 196.42 (2.32) [191.81-201.03] −1.30 0.11 .75

Cerebral cortex 365.74 (6.02) [353.79-377.69] 365.96 (4.36) [357.31-374.62] −0.22 0.00 .98

Lateral ventricles 5.91 (0.11) [5.70-6.12] 5.98 (0.08) [5.83-6.13] −0.07 0.29 .59

Thalamus 6.88 (0.11) [6.66-7.10] 6.92 (0.08) [6.76-7.08] −0.04 0.09 .76

Caudate 2.84 (0.05) [2.74-2.95] 2.85 (0.04) [2.77-2.92] −0.01 0.01 .94

Putamen 4.78 (0.08) [4.61-4.94] 4.72 (0.06) [4.60-4.84] 0.06 0.33 .57

Pallidum 1.52 (0.03) [1.47-1.58] 1.53 (0.02) [1.49-1.57] −0.01 0.03 .86

Hippocampus 3.30 (0.05) [3.19-3.41] 3.26 (0.04) [3.18-3.34] 0.04 0.37 .54

Amygdala 1.66 (0.03) [1.60-1.72] 1.62 (0.02) [1.57-1.66] 0.04 1.01 .32

Nucleus accumbens 0.41 (0.01) [0.39-0.43] 0.39 (0.01) [0.38-0.41] 0.02 1.33 .25

Brainstem 23.50 (0.39) [22.72-24.28] 24.26 (0.28) [23.70-24.82] −0.76 2.41 .12

Median ADC, 10−6 mm2/s

Cerebral white matter 854.44 (4.52) [845.46-863.41] 818.75 (3.27) [812.25-825.25] 35.69 40.12 <.001c

Cerebral cortex 894.38 (3.59) [887.25-901.51] 874.55 (2.60) [869.39-879.71] 19.83 19.63 <.001c

Thalamus 874.33 (7.65) [859.13-889.52] 796.04 (5.54) [785.03-807.05] 78.29 67.38 <.001c

Caudate 849.78 (7.38) [835.13-864.44] 790.82 (5.34) [780.21-801.44] 58.96 41.10 <.001c

Putamen 834.84 (7.13) [820.68-848.99] 778.05 (5.16) [767.80-788.30] 56.79 40.87 <.001c

Pallidum 913.85 (10.98) [892.06-935.65] 820.29 (7.95) [804.50-836.07] 93.56 46.79 <.001c

Hippocampus 951.21 (5.95) [939.39-963.04] 919.91 (4.31) [911.34-928.47] 31.30 17.80 <.001c

Amygdala 910.61 (7.42) [895.88-925.35] 862.29 (5.37) [851.62-872.96] 48.32 27.31 <.001c

Nucleus accumbens 873.81 (9.43) [855.10-892.53] 820.99 (6.83) [807.43-834.54] 52.82 20.23 <.001c

Brainstem 809.48 (4.71) [800.12-818.84] 784.63 (3.41) [777.85-791.41] 24.85 17.88 <.001c

Median CBF, mL/100 g/mind

Cerebral white matter 45.71 (1.55) [42.62-48.80] 47.57 (0.94) [45.69-49.44] −1.86 0.99 .32

Cerebral cortex 61.53 (2.28) [57.00-66.07] 67.03 (1.38) [64.28-69.78] −5.50 4.02 .048c

Thalamus 54.24 (2.18) [49.92-58.57] 55.76 (1.32) [53.14-58.38] −1.52 0.33 .56

Caudate 51.21 (1.66) [47.91-54.51] 54.64 (1.01) [52.64-56.64] −3.43 2.97 .09

Putamen 53.15 (1.69) [49.80-56.51] 56.57 (1.02) [54.54-58.60] −3.42 2.84 .10

Pallidum 43.06 (1.63) [39.83-46.29] 44.06 (0.99) [42.10-46.01] −1.00 0.26 .61

Hippocampus 53.84 (1.92) [50.02-57.65] 54.40 (1.16) [52.09-56.71] −0.56 0.06 .81

Amygdala 47.97 (1.79) [44.42-51.53] 51.08 (1.08) [48.92-53.23] −3.11 2.08 .15

Nucleus accumbens 57.77 (1.90) [54.00-61.54] 58.26 (1.15) [55.98-60.55] −0.49 0.05 .83

Brainstem 49.62 (2.03) [45.57-53.66] 46.35 (1.23) [43.90-48.80] 3.27 1.79 .19

Abbreviation: PANS, pediatric acute-onset neuropsychiatric syndrome.
a Covariates in the model are evaluated at the following values: age 143.88 months and

sex 0.59.
b P values are based on the linearly independent pairwise comparisons among the

estimated marginal means (Bonferroni corrected).

c P < .05.
d Analysis was conducted on a patient subset (n = 25) because of limited data.

Covariates in the model are evaluated at the following values: age 146.20 months and
sex 0.56.
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pallidum), and amygdala. Clinically, the most affected areas align with the type of neuropsychiatric
symptoms seen in PANS. Inflammatory changes to the amygdala may impair emotional regulation,
leading to sudden-onset emotional lability and irritability.50-52 Basal ganglia disruption may result in
motor dysregulation and obsessive-compulsive symptoms.53 Thalamic abnormalities are associated
with these alterations given its central role in mediating interconnectivity with multiple regions, such
as the basal ganglia and amygdala,54,55 as well as its influence on sleep-wake cycles.56

Prior studies35,36 of MRI in patients with recent-onset PANDAS and Sydenham chorea noted
increased volume in the basal ganglia during acute presentation compared with control participants.
Anecdotal evidence has also shown that basal ganglia size might correlate with the disease course
because striatal volume tends to normalize during remission.57 In the present study, no volumetric
differences were found between patients with PANS and control participants, likely because most
patients were in a chronic disease state (Table 1), unlike in prior studies. The patient distribution
across the disease states may have diluted the influence of transient volumetric changes seen in
recent-onset disease, resulting in a wider variability of brain region volumes in patients compared
with control participants. Additional studies enrolling patients in similar disease states are needed to
validate volumetric patterns for PANS.

No statistically significant group differences were found in CBF, but a larger variability in CBF
values was observed among patients with PANS, likely because of the patient distribution across
disease states. Changes in CBF often reflect a physiological response to local or systemic
neuroinflammation.38 Therefore, with a larger patient sample and longitudinal follow-up imaging, we

Figure 2. Visual Analysis of the Median Apparent Diffusion Coefficient (ADC) Regression Analysis for Patients
With Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS) and Control Participants
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might see an initial acute increase in CBF with a subsequent, long-term decline as a self-limiting
reaction to the inflammation. Based on the patients in this study, statistically significantly elevated
ADC values in the absence of CBF differences suggest that CBF changes may not play a direct role in
mediating neuropsychiatric symptoms. Furthermore, separate MANCOVA analyses with and without
CBF data generated similar results, indicating that the sample size included in our study was suitable
for statistical analysis.

To our knowledge, this study is the first to describe diffusion MRI–based microstructural
differences in patients with PANS. Some clinicians may argue that the patients with subtle choreiform
movements or twitches may actually have Sydenham chorea. These extremity movements may
alternatively represent the choreiform syndrome initially reported in 1962 by Prechtl and Stemmer,58

which is present in up to 38% to 47% of children with severe psychiatric or behavioral disorders.59

Ultimately, we classified the patients in this study as having PANS because their disabling symptoms
were prominently psychiatric, with only subtle choreiform movements or twitches. Although the
underlying neuroinflammatory response in PANS and Sydenham chorea has not yet been
established, multivariable analysis herein demonstrated that brain MRI for patients with similar
psychiatric profiles did not differ statistically significantly when subclassified by the presence of
subtle choreiform movements or twitches. However, post hoc analyses for individual ADC values
identified statistically significant diffusion abnormalities in more brain regions for patients with
subtle choreiform movements or twitches. This finding may provide support for the hypothesis that
PANS and Sydenham chorea are on the same clinical spectrum, in which patients with chorea
experience more diffuse inflammation. Larger, higher-powered studies are required to confirm these
results and to distinguish patients with PANS from those with phenotypically similar disorders, such
as pediatric OCD, that are well described in the neuroimaging literature.60-62

Because of skepticism around the inflammatory cause of PANS, a recent commentary
recommends against laboratory or neuroimaging tests in children with mild to moderate, acute-
onset, psychiatric-only presentations.63 However, our MRI findings revealed substantial cerebral
diffusion abnormalities among patients with and without subtle choreiform movements or twitches,
as well as across a wide range of CGAS scores, a validated measure of impairment.41 Further research
should consider leveraging advanced regression models to understand which MRI parameters lead
to the largest improvements in diagnostic accuracy for PANS. Given natural variation in MRI quality
and atlas registration, future studies may also explore less rigid quality control restrictions in the
patient selection process to expand the addressable population.

Limitations
Our study has several limitations. Because this investigation was a retrospective study, MRI was ob-
tained at different time points in the disease course, so the high number of patients with chronic symp-
toms in this study may have introduced bias. However, all patients selected were homogeneous in hav-
ing abrupt onset or relapse of obsessions and compulsions in childhood and were experiencing dis-
abling psychiatric symptoms at the time of MRI. Furthermore, this study included a broad range of
CGAS scores in the patient sample, suggesting notable diffusion abnormalities across the spectrum of
disease severity. However, this metric only considers a child’s global functioning over the past week and
does not take into account the child’s baseline function before PANS. Statistically, we also note that the
effect size or partial η2 of the MANCOVA tests may be considered large based on benchmarks in the
literature,64 but these measures will need to be reassessed with future MRI studies.65

In addition, radiological findings herein may have been biased by the variable time from last
flare onset to MRI acquisition. The influence of disease state on cerebral diffusion changes is
unknown. For the present analysis, the well-established adult Montreal Neurological Institute atlas
was registered to the MRI of patients with PANS and control participants. Alternatively,
age-appropriate atlases for pediatric brains could have been more appropriate, but results may not
be directly comparable with the use of multiple atlases.66 Another limitation of this study is the
omission of trends in laterality given that data were merged from both the left and right hemispheres
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to reduce the number of hypotheses tested. However, lateral differences were not expected in PANS
because the underlying inflammatory pathophysiology is not hypothesized to target a specific
hemisphere. Finally, although segmentation of small cerebral structures may be imperfect, an
automated approach vetted by visual quality control was used to ensure reproducibility and
minimize the observer bias common in manual segmentation.67-69

Conclusions

This study identifies cerebral microstructural differences in children with acute-onset OCD
manifesting as PANS compared with control participants. The hypothesis that neuroinflammation is
the underlying cause of acute-onset OCD in PANS may explain the MRI diffusion differences in
multiple brain structures observed herein, particularly the deep gray matter structures, such as the
thalamus, basal ganglia, and amygdala. Further study of MRI is warranted in prospective clinical trials
as a potential tool to quantitatively assess pediatric patients who are under evaluation for PANS.
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